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Molar Masses of Polymers

1. Definition of Polymers

A polymeris a high molar mass compound resulting from the concatenation of many monomer molecules
by covalent bond formation. With the term macromolecule one refers to the individual molecule that
constitutes a polymer material, while the term polymer is used interchangeably to describe
macromolecules or the material resulting from them. According to the International Union of Pure
and Applied Chemistry (IUPAC), a macromolecule is “a molecule of relatively high molar mass,
the structure of which essentially comprises the multiple repetition of units originating, actually
or conceptually, from molecules of low molar mass, the monomers”. According to Hermann
Staudinger, polymers are macromolecules for which chain length differences do not translate into
physical property differences anymore, in contrast to small molecules, for which a change in the
chemical structure usually goes along with a change in boiling point, melting point, polarity, etc. Such
differences in properties can hence be exploited to separate small molecules, while macromolecular
chains of different lengths are inseparable.

Polymers of different shapes can nowadays straightforwardly be synthesized. The most common
polymer chain architecture is that of linear homopolymers that are composed of a linear
concatenation of one single type of repeat unit. Such macromolecules can be made up of thousands of
repeat units so that the contour length of the macromolecule (the length of the polymer chain) can
exceed 1 pm.

Many of the useful mechanical properties that are uniquely associated with polymer materials
for (such as rubber elasticity, mechanical strength, toughness, viscosity) are a consequence of
their high molar mass. However, contrary to a well-defined small molecule, polymers do not have a
precise molar mass. Polymers are not monodisperse but polydisperse, that is, they are mixtures of
molecules of the same repeat unit structure (in case of homopolymers) and chain architecture but
different chain length and therefore different molar mass. In fact, most polymerization reactions
produce “broad” molar mass distributions that are a function of the polymerization conditions and
statistical processes involved in the underlying polymerization mechanism.

2. Properties of Distribution Functions

A distribution function can be characterized in terms of its different moments, which are quantitative
measures describing the shape and spread of the distribution. In general, the kt (raw) moment of a
continuous distribution is defined as the expected value of its variable raised to the kth power.
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where f(x) is the probability density function of the distribution that describes how probabilities are
distributed over the possible values of the continuous random variable. By this definition, the zeroth
moment (k = 0) is equal to unity, while the first moment (k = 1) characterizes the mean of the
distribution, p.

Higher moments are commonly expressed as central moments, which are defined about the mean p
(central moments are represented without the prime sign):

e = j (x = W FOo) dox . @

While the zeroth central moment (¢y = 1) and the first central moment (¢; = 0) do not provide much
meaningful information about a distribution function, the second central moment is particularly
important as it is equivalent to the variance, 62, which measures the spread (or the dispersion) of the
distribution around the mean:

o2 = iy = j (x - w2f (0) dx . 3

The standard deviation, o, defined as the square root of the variance, is therefore directly related to the
second central moment of the distribution. The standard deviation has the same units as the quantity
that is being measured. Moreover, the third central moment (skewness) measures the asymmetry of the
distribution, while the fourth central moment (kurtosis) characterizes the distribution of data points at
the peak. For example, a higher kurtosis indicates more data points close to the mean and sharper peaks.

3. Molar Masses of Polymers

While it is possible to fully characterize the molar mass! distribution of a polymer, ¢(M), using, for
example, chromatographic techniques, it is generally more practical to characterize the molar mass
distribution in terms of certain average molar masses that are linked to the moments of its distribution.
However, molar mass distributions of polymers are discrete and not continuous. Therefore, the integral
in Equation 1 must be replaced by a sum denotation:

Wy = Z n My . (4)

x=1

1 The term molar mass is defined as the mass of a mole of a particular substance and therefore expressed in g/mol.
In contrast, the term molecular weight refers to the ratio of the mass of a molecule to the unit of mass (known as
‘amu’ or ‘W, which is defined as 1/12 of the atomic mass unit of a C12 atom) and has no unit by definition. While
the term molecular weight remains prevalent in the scientific literature in polymer science (and is often wrongly
used with g/mol as the unit), its use has been deprecated in favor of molar mass by the IUPAC for many years.
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In case of a discrete distribution, nx does not necessarily need to represent a probability density function
but can also represent a total number of counts or any other relevant weighting factor. For ¢(M), nx may
be the number of chains with a degree of polymerization x and the corresponding molar mass Mx.

The number-average molar mass, M,,, is defined as the ratio of the first moment to the zeroth moment
of the number-fraction distribution. M,, is hence equivalent to the sum of all molar masses of the chains
present in the polymer, divided by the total number of chains. In other words, M,, is normalized against
the total number of molecules, i. e., it is a weighted average based on the number of molecules or the
arithmetic mean of the molar mass distribution
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where M, is the average mass of a repeating unit (equivalent to the molar mass of a monomer, when no
leaving group is released during the polymerization) and w, is the total mass of chains with degree of
polymerization x.

M,is relatively straightforwardly determined by different experimental techniques, and therefore often
given on a commercial sample of a polymer. Depending on the context, however, M,, may not necessarily
be very representative of the material because it overrepresents low molar mass chains. Therefore, the
weight-average molar mass, M,,, is often preferred, which is defined as the ratio of the second moment
to the first moment of the number fraction distribution:
Mw =Q=anM£ =ZWxIVIx . (6)
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The second raw moment in the numerator accounts for a more significant contribution of larger molar
mass species in the mixture. As evident from Equation 6, M,, is an average weighted for the total
mass of all macromolecules in the distribution.

In polymer science, the width of a molar mass distribution is commonly described by the
dispersity, D,2 which is defined as the ratio of M,, and M,,. It can be demonstrated that D indeed
provides a meaningful description of the width of the distribution as its definition based on the moments
of the molar mass distribution allows to derive a relation to the standard deviation ¢ (see Appendix for
the complete derivation):
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The expression o /M,, is also known as the relative standard deviation of the number distribution. Hence,
for a materials sample where all species have exactly the same molar mass so that ¢ = 0, the dispersity
is D = 1, for which reason such a sample is referred to as monodisperse. However, all polymers are
polydisperse so that D > 1. Depending on the polymerization mechanism, the molar mass distribution

2 In older literature and textbooks, the dispersity of a polymer material is also referred to as polymolecularity or
polydispersity, and the corresponding parameter as polymolecularity or polydispersity index with the symbols /
or P or PDI. But these expressions and symbols have long since been deprecated by the IUPAC in favor of the term
and symbol dispersity D.
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may be referred to as “narrow”, with D = 1, where all the chains have roughly the same length (which is
commonly but misleadingly referred to as “near monodisperse”), or “broad” where D > 1, and any
increases in o lead to disproportionately high increases in dispersity. In polymer science, the description
of the molar mass distributions in terms of D instead of o became the norm because common
experimental techniques typically give M,, and/or M,,. It is also worth noting that, because D > 1 for
many polymerization techniques, it is very important to pay attention whether a molar mass of a
polymer sample is given as its M,, or its M,,,, which will differ by a factor of D.

4. Relevance of the High Molar Masses of Polymers
Many of the unique properties of polymers are due to their high molar masses :

e Structural implications :

= Many polymer materials remain amorphous and vitrify at the glass transition
temperature that is a function of the molar mass.

=  Polymers capable of crystallizing will do so only partially because chains become
trapped in different crystals and entanglements, which results in semicrystalline
polymers.

= Polymers do not form a gaseous phase.

e Processability:

= High viscosity in both solution and in the molten state allows for melt processing
involving large deformations (film blowing, fiber drawing)

= Viscoelastic behavior

e Mechanical properties:
= Rubber elasticity
» Plastic deformation
= Polymer chain entanglement and mechanical resilience in tensile deformation
A physical background to these important aspects will be provided in the BSc course “Polymer Science”.

It is therefore essential to know about molar mass distributions, average molar masses, and dispersity
as well as their dependence on the polymerization mechanisms.
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Appendix

For the molar mass distribution of a polymer, the dispersity, D, is defined via the moments of the
distribution (the limits of the sum ranging from 1 to the maximum degree of polymerization):
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where x is the degree of polymerization. The standard deviation is defined as the root mean square

difference from the mean. For calculating the variance, we replace the integral in Equation 3 with a sum
due to the discontinuous nature of the molar mass distribution:
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This expression reflects the total squared deviation from the mean. An expression for the variance
analogous to the continuous case (Equation 3) requires normalizing this sum by the total number of
chains. Such normalization is not necessary in Equation 3 as the integral already accounts for the density
of the distribution, thus effectively weighting the squared deviations by the probability of each value
occurring. This ensures that the variance accurately represents the average deviation from the mean.

o2 = Z(Mx _ﬂ)znx .
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Expanding the sum of the numerator yields
2 2 2 2
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Rearranging results in

Esznx=az-2nx+,uz-an. (12)

Substituting into the expression for D gives:
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From the definition of M,, in Equation 5 and recognizing that y = M,,, it follows
an'(o-z‘l'/iz)'znx O'2+,L£2 a?
p= _ . =—=1+—. (14)
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